Journal of Organometallic Chemistry, 363 (1989) 387-391 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09432

Alkinkomplexe des η^5 -Cyclopentadienylnickelmethyls und deren Thermolyse

Herbert Lehmkuhl *, Friedhelm Danowski, Gerlinde Mehler,

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (Bundesrepublik Deutschland)

Joanna Popławska und Stanislaw Pasynkiewicz

Faculty of Chemistry, Warsaw Technical University, Koszykowa 75, PL-00-662 Warszawa (Poland) (Eingegangen den 22. August 1988)

Abstract

Cp₂Ni reacts at -78° C with MeLi and RC=CR to give thermolabile complexes of the type CpNiMe(η^2 -RC=CR) (R = Me (1), SiMe₃ (2)). 2-Butyne dissociates from 1 above -30° C and ethane is liberated to give (CpNi)₂(MeC=CMe) (6) via (CpNiMe)₂(MeC=CMe) (3), which is present in only small concentrations. 2 is more stable and reacts above 0° C to give both the known compound (CpNi)₂(Me₃SiC=CSiMe₃) (7) and the [bis(1,1-trimethylsilyl)- η^3 -allyl]nickel compound 5 as a result of the addition of the Me-Ni bond to the C=C bond of the coordinated alkyne in 2 followed by various rearrangements. The alkyne can be displaced from 1 and 2 in an equilibrium reaction with acetonitrile to give CpNiMe(MeCN) (4).

Zusammenfassung

Cp₂Ni reagiert bei -78° C mit MeLi und RC=CR zu den thermolabilen Komplexen vom Typ CpNiMe(η^2 -RC=CR) (R = Me (1), SiMe₃ (2)). Aus 1 dissoziiert oberhalb -30° C 2-Butin ab, und über das nur in geringer Konzentration auftretende (CpNiMe)₂(MeC=CMe) (3) bildet sich durch Ethanabspaltung (CpNi)₂-(MeC=CMe) (6). 2 ist stabiler und reagiert erst oberhalb 0°C zu einem Teil zum bekannten (CpNi)₂(Me₃SiC=CSiMe₃) (7) und zum anderen Teil durch Addition der Me-Ni-Bindung an die C=C-Bindung des koordinierten Alkins in 2 und anschließende Umlagerungen zur [Bis(1,1-trimethylsilyl)- η^3 -allyl]nickel-Verbindung 5. Aus 1 und 2 ist in einer Gleichgewichtsreaktion das Alkin durch Acetonitril zu CpNiMe(MeCN) (4) verdrängbar.

Schema 1.

Bei der Fortsetzung der Arbeiten über Synthese und Reaktivität von CpNiorganyl(η^2 -olefin)-Komplexen [1] haben wir durch Reaktion von Nickelocen mit Methyllithium und 2-Butin oder Bis(trimethylsilyl)acetylen bei -78 °C in THF erstmals Alkinkomplexe der CpNi-alkyle erhalten (Schema 1). NMR-Untersuchungen ergaben, daß das Alkin in 1 und 2 η^2 -gebunden ist und, wie bei den analogen η^2 -Alkenverbindungen der CpNi-organyle, senkrecht zur trigonal-planaren Koordinationsebene komplexiert ist. In den ¹³C-NMR-Spektren wird bis -80 °C jeweils nur ein Signal für die dreifach gebundenen C-Atome beobachtet [2].

Die Verbindungen 1 und 2 sind thermolabiler als der (η^2 -Ethylen)-Komplex des CpNi-methyls [1]. Aus 1, das bei -78° C als langsam kristallisierendes, viskoses, dunkelrotes Öl isoliert wurde, spaltet sich oberhalb ca. -30° C 2-Butin ab, und über 3 entsteht unter Abspaltung von Ethan das bekannte (CpNi)₂(MeC=CMe) (6) [3] (siehe Schema 1).

Bei der ¹H-NMR-spektroskopischen Verfolgung der Thermolyse von 1 in THF d_8 -Lösungen beobachtet man zwischen -30 und -10° C außer den für das Edukt 1 und die Produkte 6, 2-Butin ($\delta = 1.67$) und Ethan ($\delta = 0.78$) typischen Resonanzsignalen noch das Auftreten von zwei Singulett geringer Intensität bei $\delta = -0.97$ (NiCH₃) und $\delta = 5.26$ (Cp), die wir dem in nur geringer Konzentration intermediär auftretenden 3 zuordnen, in dem nach partieller Abspaltung von Alkin aus 1 zwei CpNi-methyl-Fragmente an ein Alkin koordiniert sind [4*].

Verbindung 2, die bei -78 °C als dunkelroter, kristalliner Feststoff in 48% Ausbeute isoliert wurde, ist stabiler als 1. In Lösungen von 2 bildet sich oberhalb 0 °C unter Abspaltung von Alkin und Ethan zu einem Teil das bekannte

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

 $(CpNi)_2(Me_3SiC=CSiMe_3)$ (7) [5]. Daneben entsteht ein neuer CpNi-Komplex, der durch ¹H- und ¹³C-NMR als [1,1-Bis(trimethylsilyl)- η^3 -allyl]-Verbindung (5) identifiziert wurde. Das Verhältnis von 7 zu 5 (3/1 bei 22.5 °C) kann zugunsten von 5 auf ca. 1/1 verändert werden, wenn man die Abspaltung von Alkin aus 2 dadurch zurückdrängt, daß die Thermolyse in Gegenwart überschüssigen Alkins durchgeführt wird. 5 ist ein Isomeres von 2 und entsteht wahrscheinlich als Folgeprodukt einer primären Ni-CH₃-Addition an komplexiertes Alkin in 2.

Durch Acetonitril kann aus 1 und 2 das koordinierte Alkin unter Bildung des Acetonitril-Komplexes 4 verdrängt werden. Ein Zusatz von Acetonitril zu einer THF- d_8 -Lösung von 1 (1/CH₃CN = 1/1.5) bewirkt bei -50°C noch keine Veränderung der ¹H-NMR-Signallagen von 1. Ab -30°C verändert sich das Spektrum: Außer 1 beobachtet man jetzt das Auftreten von drei Singulett bei $\delta = -0.78$, 2.15 und 4.98 im für Komplex 4 berechneten Intensitätsverhältnis von 3/3/5 neben dem Resonanzsignal von nichtkoordiniertem 2-Butin. Bei Zusatz von CD₃CN anstelle von CH₃CN fehlt das Signal bei $\delta = 2.15$ [6*]. Das nach ca. 3 h erreichte Verhältnis für 1/4 von 46/54 verändert sich weder mit zunehmender Zeit noch bei Erhöhung der Temperatur auf -20°C merklich. Wir schließen daraus auf das Vorliegen eines Gleichgewichtes. Ab -25°C nehmen allerdings die Konzentrationen von 1 und 4 gleichartig ab, der Anteil an nichtkoordiniertem 2-Butin nimmt zu, und man beobachtet das Anwachsen der ¹H-NMR-Signale von Ethan und 6 neben wenig 3. Nach 30 min bei Raumtemperatur ist außer Ethan und freiem Alkin nur noch 6 nachweisbar.

Im ¹H-NMR-Spektrum einer Lösung von 2 in CD₃CN treten ab ca. 0°C die Resonanzsignale von $4-d_3$ [7] und nichtkomplexiertem Alkin auf. Bei 3°C stellt sich ein Gleichgewichtsgemisch von 2/4 im Verhältnis 57/43 ein. Nach 24 h bei 22.5°C war dieses Verhältnis unverändert. Es lagen jedoch nur noch 8 mol-% 2 und 6 mol-% 4 neben 20 mol-% 5 und 66 mol-% 7 vor.

Ausgehend von Nickelocen ist dessen über 1 verlaufende Umsetzung mit Methyllithium und 2-Butin zwischen -40° C und Raumtemperatur ein präparativ gut zugänglicher Weg für die direkte Synthese von 6 (Ausb. 71% nach Kristallisation aus Hexan). Bisher war 6 aus Nickelocen und dem toxischen Ni(CO)₄ über (CpNi)₂(CO)₂ und dessen Umsetzung mit 2-Butin bei 110 [3b]-130°C [3a] dargestellt worden.

Experimentelles

$(2, 3-\eta-2-Butin)(\eta^{5}-cyclopentadienyl)methylnickel (1)$

Zu einer Lösung von 13.5 mmol Nickelocen und 81.5 mmol 2-Butin in 100 ml THF tropfte man bei -78° C eine frischbereitete Lösung von 23.1 mmol Methyllithium in 22 ml Ether. Nach 1 d wurden von der dann rot-braunen Reaktionslösung die Lösemittel bei -78° C/0.0001 Torr abgezogen, den Rückstand extrahierte man bei dieser Temperatur dreimal mit jeweils 50 ml gekühltem Pentan und filtrierte die vereinigten Extrakte bei -78° C. Nach Einengen des Filtrats bei dieser Temp. i. Vak. kristallisierte 1 als dunkelroter Feststoff. Bei vollständigem Abziehen des Lösemittels blieb ein viskoses, dunkelrotes Öl zurück, das langsam kristallisierte (Ausb. 30-35%).

¹H-NMR [2] (200 MHz; THF- d_8 (δ = 3.58); 193 K): δ = 5.25 (s, Cp, 5H), 2.17 (s, CH₃C, 6H), -0.95 (s, CH₃Ni, 3H). ¹³C-NMR [2] (75.5 MHz; Toluol- d_8 ; 193 K):

 $\delta = 93.1$ (d, Cp), 60.8 (s, CH₃C), 10.9 (q, CH₃C), -22.6 (q, CH₃Ni). Gef.: C, 62.15; H, 7.38; Ni, 30.31, C₁₀H₁₄Ni (192.9) ber.: C, 62.26; H, 7.32; Ni, 30.42%.

$(\eta^{5}$ -Cyclopentadienyl)methyl[η^{2} -bis(trimethylsilyl)acetylen]nickel (2)

Es wurde ähnlich verfahren wie für 1 beschrieben, jedoch wurde nur ein geringer Überschuß an Me₃SiC=CSiMe₃ eingesetzt, da sonst dessen Entfernung Schwierigkeiten bereitet. Aus 4.8 g (25.5 mmol) Nickelocen, 5.06 g (29.7 mmol) Me₃-SiC=CSiMe₃ und 38.0 ml 1.07 *M* Etherlösung von Methyllithium (40.7 mmol) wurden 3.75 g (12.1 mmol; 48%) 2 als roter Feststoff erhalten.

¹H-NMR [2] (200 MHz; THF- d_8 ; 193 K); $\delta = 5.27$ (s, Cp, 5H), 0.32 (s, CH₃Si, 18H), -1.19 (s, CH₃Ni, 3H). ¹³C-NMR [2] (75.5 MHz; Toluol- d_8 ; 243 K): $\delta = 99.05$ (s, C=C), 92.95 (d, Cp), -0.03 (q, CH₃Si), -22.95 (q, CH₃Ni). Gef.: C, 54.22; H, 8.48; Ni, 18.87; Si, 18.28. C₁₄H₂₆NiSi₂ (309.3) ber.: C, 54.37; H, 8.47; Ni, 18.98; Si, 18.17%. MS (70 eV; 10°C): m/z (bez. auf ⁵⁸Ni; in Klammern: rel. Intensitäten) = 308 (M^+ ; 18%), 293(20), 228(38), 155(100), 123(16), 97(16), 73(50), 45(17).

$(\eta^{5}$ -Cyclopentadienyl)[1,1-bis(trimethylsilyl)- η^{3} -allyl]nickel (5)

0.32 mmol 2 und 0.26 mmol Bis(trimethylsilyl)acetylen in 3 ml Pentan wurden 20 h bei Raumtemp. gehalten. Nach Abziehen des Pentans und des Alkins i. Vak. wurde der Rückstand in THF- d_8 gelöst. ¹H-NMR-spektroskopisch waren 7 und 5 im Molverhältnis 2.5/3 nachzuweisen.

5: ¹H-NMR [2] (80 MHz; THF- d_8 ; 310 K): $\delta = 5.69$ (dd, 2-H(*meso*), ³J(2-H, 3-H(*syn*)) = 6.5, ³J(2-H, 3-H(*anti*)) = 11.5 Hz), 2.92 (d, 3-H(*syn*)), 1.94 (d, 3-H(*anti*)), 0.21 und 0.09 (2 s, CH_3 Si). ¹³C-NMR [2] (75.5 MHz; Toluol- d_8 ($\delta = 20.4$); 313 K): $\delta = 105.3$ (d, C(2), ¹J(C,H) = 161 Hz), 89.9 (d, Cp, ¹J(C,H) = 173 Hz), 56.4 (s, C(1)), 43.3 (t, C(3), ¹J(C,H) = 156, ¹J(C,H') = 158 Hz), 4.3 (q, CH_3 Si, ¹J(C,H) = 119, ¹J(C,Si) = 51.9 Hz) 1.5 (q, CH_3 Si', ¹J(C,H) = 119, ¹J(C, Si') = 51.9 Hz).

$[\mu - \langle (2, 3-\eta; 2, 3-\eta) - 2 - Butin \rangle]$ bis $(\eta^{5}$ -cyclopentadienyl) dinickel(Ni-Ni) (6)

Bei -40 °C wurden zu einer Lösung von 2.3 g (12.2 mmol) Nickelocen und 6.0 g (111 mmol) 2-Butin in 100 ml THF 40 ml einer frischbereiteten 0.4 *M* Etherlösung von Methyllithium (16.0 mmol) getropft. Nach Erwärmen auf ca. 20 °C hielt man die Reaktionsmischung 12 h bei dieser Temperatur. Nach Abziehen der Lösungsmittel i. Vak. löste man den Rückstand in 5 ml Hexan und chromatographierte die Lösung über neutralem Al₂O₃ mit Hexan/THF (8/1) als Eluent. Von der dunkelgrünen Hauptfraktion wurden die Lösemittel i. Vak. abgezogen. Den Rückstand löste man in wenig Hexan und hielt die Lösung bei -78 °C. Es fielen 1.3 g (4.31 mmol); 71%) 6 als dunkelgrüne Kristalle aus.

¹H-NMR [2] (200 MHz; Benzol- d_6 ; 300 K): $\delta = 5.20$ (s, Cp, 10H), 2.24 (s, CH₃C, 6H). ¹³C-NMR [2] (75.5 MHz; THF- d_8 ; 311 K): $\delta = 100.5$ (s, CH₃C), 87.6 (d, Cp, ¹J(C,H) = 173 Hz), 17.9 (q, CH₃C, ¹J(C,H) = 129 Hz). Gef.: C, 56.16; H, 5.40; Ni, 38.42. C₁₄H₁₆Ni₂ (301.7) ber.: C, 55.74; H, 5.35; Ni, 38.91%. MS (70 eV; 40 °C): m/z (bez. auf ⁵⁸Ni, in Klammern: rel. Intensitäten) = 300 (M^+ ; 50%), 246(80), 188(100), 123(32), 58(15).

Bis(η^5 -cyclopentadienyl)[μ - $\langle 1,2$ -bis(trimethylsilyl)1,2- η : 1,2- η)acetylen \rangle]dinickel(Ni-Ni) (7)

0.37 g (1.20 mmol) 2 in 3 ml Pentan wurden 12 h bei Raumtemperatur gehalten. Die dann grüne Lösung wurde auf 1 ml eingeengt, und beim Abkühlen auf -78° C fielen grüne Kristalle von 7 aus.

¹H-NMR [2] (200 MHz; Toluol- d_8 ; 300 K): $\delta = 5.09$ (s, Cp, 10H), 0.28 (s, CH₃Si, 18H). ¹³C-NMR [2] (75.5 MHz; Toluol- d_8 ; 313 K): $\delta = 109.6$ (s, C=C), 86.5 (d, Cp), 1.2 (q, CH₃Si). MS (70 eV; 33°C): m/z (bez. auf ⁵⁸Ni; in Klammern: rel. Intensitäten) = 416 (M^+ ; 40%), 246(100), 188(40), 123(23), (73(35), 45(23).

Dank

S.P. und J.P. danken der Max-Planck-Gesellschaft für Forschungsstipendien in den Jahren 1985 (S.P.) und 1987 (J.P.).

Literatur

- 1 H. Lehmkuhl, T. Keil, R. Benn, A. Rufińska, C. Krüger, J. Popławska und M. Bellenbaum, Chem. Ber., 121 (1988) 1931; siehe dort weitere Lit.
- 2 NMR-Datensammlung des Max-Planck-Instituts für Kohlenforschung, Mülheim a.d. Ruhr.
- 3 (a) J.F. Tilney-Bassett, J. Chem. Soc., (1961) 577; (b) E.W. Randall, E. Rosenberg, L. Milone, R. Rosetti und P.L. Stanghellini, J. Organomet. Chem., 64 (1974) 271; (c) R. Rossetti und P. Stanghellini, Inorg. Chim. Acta, 15 (1975) 149.
- 4 (2,3- η : 2,3- η -2-Butin)bis[(η^{5} -cyclopentadienyl)methylnickel] (3): ¹H-NMR (80 MHz; THF- d_{8} ; 263 K): $\delta = 5.26$ (s, Cp), -0.97 (s, CH₃Ni).
- 5 M. Green, J.C. Jeffery, S.J. Porter, H. Razay und F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1982) 2475.
- 6 (Acetonitril)(η^5 -cyclopentadienyl)methylnickel (4): ¹H-NMR (80 MHz; THF- d_8 + CH₃CN; 248 K): $\delta = 4.98$ (s, Cp, 5H), 2.15 (s, CH₃CN, 3H), -0.78 (s, CH₃Ni, 3H). Nichtkoordiniertes Acetonitril: $\delta = 1.96$ (s). ¹³C-NMR [2] (75.5 MHz; THF- d_8 + CH₃CN; 248 K): $\delta = 122.4$ (s, CH₃CN), 89.4 (d, Cp), 3.9 (q, CH₃CN), -36.2 (q, CH₃Ni). Nichtkoordiniertes Acetonitril: $\delta = 117.6$ (s, CH₃CN), 1.5 (q, CH₃CN).
- 7 ¹H-NMR (80 MHz; CD₃CN (Restsignale: $\delta = 1.93$); 276 K): $\delta = 5.02$ (s, Cp), -0.82 (s, CH₃Ni).